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The dynamics of a radiating viscous fluid universe coupled with zero-mass scalar 
field is investigated in the Einstein formalism and two exact solutions are 
obtained. Both the solutions give expanding models. Their many physical and 
geometrical properties are studied. The model universe corresponding to the 
first solution turns out to be a "big bang" model. The second model shows an 
interesting feature of absorbing radiation rather than emitting it under certain 
conditions. 

1. INTRODUCTION 

It is well known that no real astrophysical object is composed of a 
perfect fluid. On the other hand, objects with large energy output, either in 
the form of photons or neutrinos or both, in some phases of their evolution 
are very much known to exist. A nonstatic distribution would be radiating 
energy and so it would be surrounded by an ever-expanding zone of 
radiation. The early universe was an undifferentiated soup of matter and 
radiation in a state of thermal equilibrium. Gamow (1946) pointed out that 
in the distant past the universe was dominated by radiation. During the 
photon decoupling stage, part of electromagnetic radiation behaved as a 
perfect fluid comoving with matter, while part of it behaved like a unidirec- 
tional stream moving with fundamental velocity. Again during the neutrino 
decoupling stage a similar situation arose in which, apart from streaming 
neutrinos moving with fundamental velocity, there was a part behaving like 
a viscous fluid comoving with matter. The discovery of quasistellar objects 
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and their huge energy requirements motivated various authors to develop 
a theory of hot convective supermassive stars where general relativistic 
effects are important. Einstein showed that the linearized equations of 
gravitational theory revealed the existence of gravitational radiation. 
Thereafter investigations on the nature and characteristics of radiation and 
radiation field was carried out by Eddington (1918), Jeans (1926a, b), Milne 
(1929), and Thomas (1930). Also, many authors (Sachs, 1961; Heller and 
Klimek, 1975; Bayin, 1979, 1980; Herrera et al., 1980; Cosenza et al., 1981; 
Szydlowski and Heller, 1983) studied different aspects of radiating matter 
distribution. Recently many interesting results on the radiating perfect fluid 
distribution were obtained by Singh (1988). Analytic solutions of the time- 
dependent field equations with a nontrivial pressure distribution of perfect 
fluid and radiation were given by Vaidya (1951a, b). 

On the other hand, scalar fields, as they help in explaining the creation 
of matter in cosmological theories, represent matter fields with spinless 
quanta and can describe gravitational fields. Here for our investigation we 
consider in the following a particular scalar field, namely a scalar meson 
field which is of zero-mass type and characterizes long-range interactions. 
Meson particles with the charge of electron and masses of the order of 
magnitude of 200 electron masses are found in cosmic rays. These particles 
have a good deal to do with the nuclear forces. The scalar meson field is 
a matter field and is associated with zero-spin chargeless particles like 7r 
and K mesons. The study of such a field in general relativity has been 
initiated to provide an understanding of the nature of space-time and the 
gravitational field associated with neutral elementary particles of zero spin. 
The concept of scalar fields was introduced by Dirac (1938) in trying to 
explore the idea of Mach's principle, and he thereby obtained a theory in 
which the gravitational constant is no longer a constant, but is dependent 
on time. Thereafter Das (1962), Hyde (1963), Penney (1969), Das and 
Agarwal (1974), Rao et al. (1976), and Gurses (1977) investigated physically 
realistic solutions on the behavior of the scalar fields. Banerjee and Santosh 
(1981), Froyland (1982), and Accioly et al. (1984) discussed and obtained 
useful solutions for the coupled gravitational and scalar fields. The different 
aspects and outcomes of the interactions of a viscous fluid distribution with 
a scalar field were studied by Singh and Bhamra (1987). 

However, hardly any work has been done in studying the interaction 
between a radiating viscous fluid distribution and a zero-mass scalar field. 
We are thus motivated to take up this problem. We study here the behavior 
of the scalar field and the radiation field at different stages of the universe. 
Both fields are found to die away as time passes and also as the radial 
distance from the center of the model increases. We also study the role of 
viscosity in both the models obtained here. 



Radiating Universes: Exact Solutions 1017 

2. FIELD EQUATIONS 

For this problem we choose the spherically symmetric isotropic line 
element 

ds2 = exp(y)  d t 2 - e x p ( f l )  �9 (dr2+r2dO2+r2sin20dq~ 2) (1) 

where/3 is a function of  r and t, and 3' is a function of  t only. 
We consider a frame which, at any point in space, is at rest with respect 

to the matter located at that point, that is, the frame in which the universe 
is isotropic and homogeneous,  and is so called the comoving frame. Stated 
differently, the comoving frame is tied to the galactic fluid. 

Now the components of  fluid velocity in a comoving coordinate system 
for the metric (1) are given by 

along with 

and u 4 = e x p ( - y / 2 )  (2) 

g~uiuj = 1 (3) 

Here, in our case, we have the energy-momentum tensor T.~ as 

T.,, =Z~, ,+E. , .+S~, .  (4) 

where Z ~  corresponds to the mechanical part of  the energy-momentum 
tensor due to matter and can be taken as the energy-momentum tensor for 
a viscous fluid, so that 

Z~,. = pu~u~,'+ (p - ffO)Hu~ - 2 ~o-~ (5) 

where p is the density of the fluid and p the pressure, and ~ and ~ are the 
coefficients of  shear and bulk viscosity, respectively, which are assumed to 
be constants for our case. Here O is the volume expansion, H ~  is the 
projection tensor, and cr.~ is the shear tensor. Again, E ~  corresponds to 
the energy-momentum tensor for the spherically symmetric, radially expand- 
ing radiation (Vaidya, (1951a, b) and is given by 

along with 

and 

Ettu = O' l (Op. tot ,  ( 6 )  

o~'~o~,~ = 0 (7) 

/z /J 
~;, ,~ = 0 (8) 

where o-1 is the density of  the flowing radiation. S ~  corresponds to the 
energy-momentum tensor for the zero-mass scalar field and is given by 

S.,. = q~.q~,. -- l  g.,.q~kq~ k (9) 
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where the scalar potential ~ satisfies the Klein-Gordon equation 

g ~ : ~  = e (10) 

where e is the source density of the scalar field. Hence, finally, T.~ can be 
written as 

T . ~ = p u ~ u ~ + ( p - ~ |  k (11) 

Here we note that the orthogonality conditions for viscous fluid are 
satisfied identically, namely 

H . ~ u  ~ = 0 

o'~,~u ~ = 0 
(12) 

tot~vu v ~- 0 

ft~u ~ = 0 

where tip is the acceleration and t%~ is the rotation tensor. 
Now, for the metric (1), the Einstein field equation 

' = - 8 ~ G ( & ~ + E ~ o + & ~ )  R ~  - i R g . ~  

yields 

. .  3 2 
- \ 7  - ~ - ] e x p ( - / 3 ) + ( f l + ~ / 3 - - ~ - - ) e x p ( - y )  

= - 8 " n ' G ( p  - ~ 0 )  + 8~rGcr l to l to  1 - 4 ~ G  

x [exp(-/3)- ~ ' 2 + e x p ( - 7 ) .  r (13) 

/3" /3' 
- ( -~-+~r)  exp(-/3) + (/~ + ~/~2-~-~) exp(-  Y) 

= - 8 1 r G ( p  - ~O) + 4~rG[exp(-/3) �9 ~,2 _ exp( -y)  �9 r (14) 

[ ,, 1 ,2 2 /~2 
- ~ f l  +~f l  + r  f l ' )exp(-f l)+n3-exp(-y) " 

= 8 ~ G p + 8 ~ - G o h t o 4 t o 4 + 4 ~ G [ e x p ( - f l )  �9 ~o'2+exp(-y) �9 ~b 2] (15) 

- e x p ( - y ) ' / ~ '  

= 8 ~rGoq tolto4 + 8 ~rG~'~ (16) 

Also from (7) and (8) we get, respectively, 
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and 

0o+0o 
Or Ot exp + toa+/3w ~exp =0  (18) 

Again from (10) we have 

3 ,  
\ r  2 ]  exp(-/3) ,  q~ '+ (~-~ /3 )  exp(-/3)-  

x e x p ( - r ) .  ~b -exp( -y ) .  ~; = e (19) 

Now from the above equations we see that the number of unknowns 
to be determined is greater than the number of equations at hand. Therefore, 
we try to solve them by assuming some relation between them. 

(Note that overdot and prime denote, respectively, partial differenti- 
ation with respect to t and r; and a semicolon followed by a subscript 
denotes covariant differentiation.) 

3. SOLUTIONS OF THE FIELD EQUATIONS 

From (16) and (17) we get 

8~rGo'lto~tol =-87rG~o'~b e x p ( ~  ---~) - /3 '  exp ( Z ~ )  (20) 

Again subtracting (14) from (13), we have 

' 4 ~ exp(-/3)--8~rG~rl~O~O 1-8~rG exp( -3 )"  , 2  (21) 

Now (20) and (21) give 

2 4 2 r -  -8~-Gr exp -8~Gq~'2-/3 ' exp (22) 

Here we assume 

fl = f ( r )+g( t )  (23) 

and 

h(r) k(t) 
~o (8r + (8~.G)1/2 (24) 

Then (22) becomes 

h ' \ 2  4 2r q- h'2 exp - = - / c e x p  (25) 
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Since the left-hand side is a function of r only, whereas the right-hand side 
is a function of  t, only, we can equate both of  them to a constant. Thus, 
now (25) separates into 

and 

k. [ g +  Y~ exp k - - ~ )  = c  (26) 

) h' 4 2r ~- h'2 exp - = - c  (27) 

where c is an arbitrary constant. 
If  we take 

g( t )  = A k ( t )  (28) 

and 

y(  t ) = Bk(  t ) 

where A and B are arbitrary constants, then from (26) we get 

/r = c exp{-  �89 + B) k} 

which gives 

2 / A + B \ +  2--~l~ k =  A + B l ~  

that is, 

k = - D  log D +  D log(d + ct) 

where D = 2 / ( A +  B), and d is an arbitrary constant. 

3.1. Case I 

Now a solution of  equation (27) is 

f =  2b log(at)  

h' = 1 {[C2a2b F2b+2 -1- 4b(b + 2 ) ]  1/2 - cabr b+l} 

where a and b are arbitrary constants. 
Then (23) and (29), respectively, give 

/3 = 2b log(ar) + A D  log(d + ct) - A D  log D 

y = B D  log(d + ct) - B D  log D 

(29) 

(30) 

(31) 

(32) 

(33) 



Radiating Universes: Exact Solutions 1021 

Also from (24), (30), and (31) we get 

= �89 + 1)-a([4b(b + 2) + c2a2br2(b+l)]1/2 

+ 2(b 2 + 2b) 1/2 log{[4b ( b + 2) + a2bc2r2(b+l)] 1/2 -- 2[b(b + 2)] 1/2} 

- 2[b(b + 2)] 1/2 log(cabr b+l) -- cabr b+l) 

Again, using (32), we find that equation (18) becomes 

Ot~ + Oto I exp ( ~ - ' ~ ) +  ~ to 1 + flto I exp ( ~ - ~ ) O r  Ot =0 

the solution of which is 

tO 1 = z D A D  r-b  ( d + ct ) -  AD 

where z is a constant of integration. 
Therefore, from (17) we have 

tO4 = zabD( d + ct)-i 

Also, from (20) we get 

81rGtrltOltO 1= -8~rG~p'~b e x p ( ~  --~) 

Thus, 
c cr 1 = z-2a-abr-b{[c2(ar)2b+4b(b+2)r-2]l/2--c(ar) b} 

16zrG 

From (13) and (14) we have 

16zrG(p- ~'0)= 8q'/'GO'ltolO,) 1 + (/3"+/3'z+ 3/3'~ exp(-/3) 
\ 2  4 2 r ]  

- 2(/3 + ~/~2- ~-~) exp(-y)  - 8 ~'G exp(-,)~b 2 

which gives 

p = - -  1 (24~GAc~Dl~O/2+l(d + ct)_Bo/2_ 1 
16~G t 

+ o a ~  b( b + 2)a-2b r-2b-2 +2] ( d + ct)-A~ 

+ Ac2(2 + B D  - A - ~ D  -~ AD)D~~  + ct) -~~ 

--�89176 2b +4b(b + 2)r-211/2(d + ct)-A~ 
J 

(34) 

(35) 

(36) 

(37) 

(38) 
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From (15) we get 

1 {c2(3A 2 -  2)DB~  d + ct)  AD-BD-2  
P 327rG 

+ c2D AD - 4 b ( b  + 2 ) a - 2 b D A O r  - :b-2  

-- c D a ~  +4b(b + 2)r-2] 1/2 

- 2 b ( a r ) - 2 b D a ~  + 2) r-2}(d + ct) - A ~  (39) 

From (19) we have 

e = ( 8 ~ r G ) - l / 2 D a ~  + c t ) - A ~  2b 

+ 4 b ( b  + 2)r-2]-l/212b(b + 1)(b + 2) r -3 

+ (b  + 1)c2a2br 2b-1] -- c ( b  + 1)abr b-l} 

+ I ( B D  - 3 A D  + 2 ) c 2 ( 8 ~ r G ) - l / E D ~ D + l ( d  + ct) - ~ ~  (40) 

The luminosity L of this model is given by 

L = -4~rr 2 exp(fl) �9 trlto 1 

- 1  

_ cz a _ b r E { [ c E ( a r ) 2 b + 4 b ( b + 2 ) r _ 2 ] l / Z _ c ( a r ) b  } (41) 
4 G  

3.2. Case II 

Another solution of equation (27) is 

f =  2b log(ar) (42) 

h ' =  - �89  c( ar)  b + [ c2( ar)  2b +4b(b + 2)r-2] 1/2} 

Singh and Bhamra 

Now, in this case also, proceeding in the same manner as in the previous 
case, we obtain 

to I = z D a D r - b ( d  + ct)  -AD (43) 

to 4 = z a b D (  d + ct) -1 (44) 

Here, the scalar potential is given by 

q~ = �89 8 ~ G ) - l / 2 (  b + 1)-l(2[b(b + 2)] 1/2 log(  ca b r b+l) 

- cabr b+l - [4b(b + 2) + (abcrb+l)2] 1/2 

--2[b(b + 2)] 1/2 log{[4b(b + 2) + (a%rb+l)2] 1/2 

- 2[b(b + 2)]'/2}) (45) 
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The radiation density is given by 

c z-2 a-3b r-b { c( ar ) b 
~ = -16r 

+ [ c2(ar) 2b + 4b (b + 2) r -2] 1/2} (46) 

The fluid pressure is given by 

1 (lcDAD(ar)-b{[c2(ar)2b + 4b(b + 2) r-2] 1/2 + c(ar) b} 
P = 16~'G 

x (d + c t )  - A D  -b 24zrGAc~DBO/2+a(d + ct) -m9/2-1 

+ Ac2DR~ + BD - A-~D - 3 A D ) ( d  + ct) -A~ 

+ b ( b + 2) a -2bDaOr-2b-2(d + Ct)-a~ ) (47) 

The fluid density is given by 

1 {c 2 
P =8---~ -4- (3A2-2)DB~ + c t )A~176  

"k Ic2DAD +�88176 + 2) r -2 + c2(ar)2b] 1/2 

-- 3b(b + 2)a-2bDa~ + ct) -AD (48) 

The source density of the scalar field is given by 

e = �89 + 2 -  3 A D ) D  B~ + ct) -n~ 

- (8zrG)-l/2DA~ + ct)-a~ + 1)(b + 2 ) r  -3 

+ (b + 1)c2a2brZb-~][ce(ar) zb + 4b(b + 2)r-2] -~/2 

+ c(b + 1)abr b-l} (49) 

and 
r 

L = - ~  z-la-br2{[c2(ar)2b + 4b(b + 2)r-2] x/2- c(ar) b} 

4. CONCLUSIONS 

4.1. Case I 

In this case the line element takes the form 

ds 2 = D-nD ( d + ct )B~ 2 -  ( ar)2bD-A~ ( d + ct ) aD 

X (dr2+ r 2 d02+ r 2 sin 2 0 dr z) 

(50) 

(51) 
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where a, b, c, d, A, B, and D are arbitrary constants. Here the fluid pressure 
and the fluid density both are found to be decreasing functions of  time. 
Though both  of  them are also decreasing functions of  r, the fluid density 
is not  found to decrease appreciably.  At t = 0 the pressure and the density 
both have certain values which happen to be decreasing functions of  r, and 
as t ~ oo, both of  them tend to zero. At r = 0, that is, at the center of  the 
model,  there is a singularity. Here the effect of  viscosity is to increase the 
pressure, but this effect gradually decreases as t ime passes. Again, if d 
happens  to be  zero, then in that case our model universe turns out to be a 
"big bang"  model. 

For this distribution to be a realistic one, we must have (i) p-> 0, (ii) 
p > 0; and (iii) p->p,  which respectively give 

2Acab ( B + 2D -1 - A - 1 -  ~A)[(d + cl ) D-1] AD-BD-2 

+ 48~GA~ab[(d + cl)D--1]AD--1--BD/2-1 - abc  

2b + - -  (b + 2 ) a - b r  - 2 b - 2  
c 

>-- r-b[ c2( ar) 2b + 4 b ( b  +2) r -2]  1/2 (52) 

c2{(3A 2 -  2)[(d  + ct)D-1]A~176 1} 

-- 6b( b + 2) a-2b r-2b-2 -- c( ar) -b 

X [4b(b + 2)r -2 + c2(ar)2b] ~/2 > 0 (53) 

and 

c2(3AZD- 2 A -  ABD)DBD+~( d + ct) -BD-2 

> 24,;,rGAc~DBD/2+l(d + ct) -B~ 

+ 4b(b + 2)a-2bDADr-2b-2(d "F c t )  - A D  (54) 

Moreover,  f rom the condition p > 0 we can get one more relation, namely 
t > - d / c .  Thus, we see that  this solution is valid for a certain interval of  
t ime period including the early stages of  the universe. Again if b = - 2  we 
get the life span of  the model  universe as 

[" C l l / ( n O + l )  

-cl L (aaD- 2- t O)OB~ - - > -  

- - ~  24~'G,~DA A 2 D + D - A B D - 2 A  (55) 

Here the radiation density is a decreasing function of  r. The components  
r and to 4 of  radiation are decreasing functions of  time, whereas to ~ 
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decreases also with the increase of  radial distance. Thus, on the whole we 
see that the radiation dies away with the passing of time and also as the 
radial distance increases. I f  b = - 2 ,  then the source density of  radiation 
vanishes, and thus there is no radiation in that case. Again, the luminosity 
happens  to be a function of  r only, and at r = 0, that is, at the center of  
this model,  there is no luminosity. 

In this model the source density of  the scalar field is a decreasing 
function of  both  r and t. As t-> oo the source density vanishes. The scalar 
potential  ~ is also a decreasing function of  r and it vanishes if b = - 2 .  One 
peculiarity here is that the scalar field vanishes as soon as the radiation 
field vanishes and conversely. Again, the source density of  the scalar field 
vanishes if  b = - 1  and B D  + 2 = 3AD. However,  in this case both the scalar 
field and the radiation field exist. 

The  components  % of shear tensor are all zero; the rotation oJ also 
turns out to be zero. 

Here the "expansion factor"  O of  the fluid lines is given by 

= 3AcD(BD/2)+I(d + r -BD/2-1 (56) 

I f  A, B, c, and D are positive quantities, then we see that the expansion 
factor is positive and in that case our model universe is an expanding one, 
but the rate of  expansion decreases as time passes. 

For this model,  the spectral shift will be 

A+t~A ( d + cto~ -BD/2 
A = \ d + c t /  (57) 

Again for a light ray propagated radially from rl at t, reaching re at t2 
we have 

which gives 

I t2 I r2 
e x p ( 7 / 2  ) dt = exp(~ /2 )  dr 

tl r I 

It2 f r2 (d + ct) (B-A)D/2 dt = D(B-A)D/2(ar) b dr (58') 
ttl rl 

The integral on the right side is finite, and the integral on the left side 
converges (and has finite value) for t 2 --> 0. Thus, we have a particle horizon. 
We see that  an observer at rest at any point in this model could theoretically 
obtain information concerning sufficiently early states of  all parts of  the 
universe; however,  though, by waiting for an infinite length of  time, the 
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observer could not obtain information as to their behavior  later than a 
certain epoch relating to this model. 

4.2. Case II 

In this case the fluid pressure as well as the fluid density are found to 
be decreasing functions of  r and t both. As seen from their expressions, 
both  the pressure and the density behave nicely at the beginning of  the 
epoch and as t-> oo both of  them almost vanish. Thus, we see that in the 
early stages of  the evolution of  the universe this solution is valid. Again 
here the effect of  viscosity is to increase the pressure, but this effect gradually 
decreases as t ime passes; thus, in this model  the role of  viscosity is more 
important  in the early stages of  the evolution of  the universe. 

Here also the temporal  history of  this model does not span the entire 
t ime period 0 -< t --< ~ ,  since it is restricted by the reality conditions involving 
the density and the pressure and we get the limits in this case as 

d l [ 2 4 ~ G ~ ( B D +  2 3AD)DBD/2] l/(mg+') --  -~>t 
C r 

- c c [.24~rGA~D 

The source density of  the scalar field is a decreasing function of  time, 
and as t ~ o o  the source density vanishes. The scalar potential ~0 is a 
decreasing function of  r. In this case also the scalar field vanishes if  the 
radiation field vanishes and vice versa. 

Here the "expans ion  factor" O turns out to be 

0 = 3 A c D B D / 2 + I ( d  + ct) --BD/2--1 (60) 

showing that this model is also an expanding one as in the previous case. 
The shear and the rotation are found to be zero in this case. 
For this model also there is particle horizon. The spectral shift turns 

out to be the same as in the previous case, 

A+6A ( d + c t , ~  -~D/2 
h = \ d--~et2/ (61) 

Here the component  to 1 of  radiation is found to be a decreasing function 
of  time and radial distance both, but to 4 happens  to be a function of  time 
only and decreases with time. Here the radiation density turns out to be a 
negative quantity; thus, in this case the distribution would not be radiating 
energy; rather, it would be absorbing energy. This type of radiation- 
absorbing distribution is being investigated further. However,  if we take c 
to be a negative quantity, then the radiation density is a positive quantity 
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and it is a decreasing function of r. Here the luminosity is a function of r 
only. At the center of this model there is no luminosity, but it increases 
gradually with the radial distance. 
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